205 research outputs found

    Inference of Selection Based on Temporal Genetic Differentiation in the Study of Highly Polymorphic Multigene Families

    Get PDF
    The co-evolutionary arms race between host immune genes and parasite virulence genes is known as Red Queen dynamics. Temporal fluctuations in allele frequencies, or the ‘turnover’ of alleles at immune genes, are concordant with predictions of the Red Queen hypothesis. Such observations are often taken as evidence of host-parasite co-evolution. Here, we use computer simulations of the Major Histocompatibility Complex (MHC) of guppies (Poecilia reticulata) to study the turnover rate of alleles (temporal genetic differentiation, G’ST). Temporal fluctuations in MHC allele frequencies can be $#order of magnitude larger than changes observed at neutral loci. Although such large fluctuations in the MHC are consistent with Red Queen dynamics, simulations show that other demographic and population genetic processes can account for this observation, these include: (1) overdominant selection, (2) fluctuating population size within a metapopulation, and (3) the number of novel MHC alleles introduced by immigrants when there are multiple duplicated genes. Synergy between these forces combined with migration rate and the effective population size can drive the rapid turnover in MHC alleles. We posit that rapid allelic turnover is an inherent property of highly polymorphic multigene families and that it cannot be taken as evidence of Red Queen dynamics. Furthermore, combining temporal samples in spatial FST outlier analysis may obscure the signal of selection

    Hybridisation generates a hopeful monster: a hermaphroditic selfing cichlid

    Get PDF
    Compared to other phylogenetic groups, self-fertilization (selfing) is exceedingly rare in vertebrates and is known to occur only in one small clade of fishes. Here we report observing one F1 hybrid individual that developed into a functional hermaphrodite after crossing two closely related sexually reproducing species of cichlids. Microsatellite alleles segregated consistent with selfing and Mendelian inheritance and we could rule out different modes of parthenogenesis including automixis. We discuss why selfing is not more commonly observed in vertebrates in nature, and the role of hybridisation in the evolution of novel trait

    Estimates of genetic differentiation measured by FST do not necessarily require large sample sizes when using many SNP markers

    Get PDF
    Population genetic studies provide insights into the evolutionary processes that influence the distribution of sequence variants within and among wild populations. FST is among the most widely used measures for genetic differentiation and plays a central role in ecological and evolutionary genetic studies. It is commonly thought that large sample sizes are required in order to precisely infer FST and that small sample sizes lead to overestimation of genetic differentiation. Until recently, studies in ecological model organisms incorporated a limited number of genetic markers, but since the emergence of next generation sequencing, the panel size of genetic markers available even in non-reference organisms has rapidly increased. In this study we examine whether a large number of genetic markers can substitute for small sample sizes when estimating FST. We tested the behavior of three different estimators that infer FST and that are commonly used in population genetic studies. By simulating populations, we assessed the effects of sample size and the number of markers on the various estimates of genetic differentiation. Furthermore, we tested the effect of ascertainment bias on these estimates. We show that the population sample size can be significantly reduced (as small as n = 4–6) when using an appropriate estimator and a large number of bi-allelic genetic markers (k.1,000). Therefore, conservation genetic studies can now obtain almost the same statistical power as studies performed on model organisms using markers developed with next-generation sequencing

    Genetic variation in resistance and high fecundity impede viral biocontrol of invasive fish

    Get PDF
    Common carp Cyprinus carpio is one of the top global invasive vertebrates and can cause significant ecological damage. The Australian Government's National Carp Control Program (NCCP) proposes to release Koi herpesvirus (KHV) to eradicate feral carp in one of the largest ecological interventions ever attempted. Ecological and human health risks have been highlighted regarding the release of a highly pathogenic viral biocontrol for an aquatic species. The efficacy of KHV has also been questioned, and it has not been demonstrated to produce lasting population reductions. We developed an individual-based model (IBM) to examine the ecological and evolutionary response of a carp population after KHV release. This simulated the interaction between fish life history, viral epidemiology, host genetic resistance and population demography to critically evaluate the impact of KHV release under optimal conditions and a ‘best-case scenario’ for disease transmission. KHV will rarely result in prolonged reductions or population extinctions. Crucially, realistic scenarios result in a rapidly rebounding population of resistant individuals. Additional measures aimed to reduce carp population recovery rate (e.g. with genetic engineering) require rapid efficacy to significantly reduce carp numbers alongside KHV. Fish fecundity has an overwhelming influence on viral efficacy as a biocontrol agent when combined with genetic resistance within a population. A high probability of population extinction is only met when carp fecundity is reduced to 1% of biological observations. Synthesis and applications. We use an individual-based model to evaluate the efficacy of Koi herpesvirus biocontrol in Common Carp, and find that high host fecundity combined with genetic resistance results in rapid population rebound after initial large fish kills. Biocontrol approaches relying on natural selection lose efficacy over successive generations as resistance genes increase in frequency. Given the intense logistical effort and risks to ecosystems and human health associated with large fish kills after viral release, we suggest that sustained manual removal, alongside ecological restoration to favour recovery of native species, provides a risk-free approach to reducing populations

    A Model of Genome Size Evolution for Prokaryotes in Stable and Fluctuating Environments

    Get PDF
    Temporal variability in ecosystems significantly impacts species diversity and ecosystem productivity and therefore the evolution of organisms. Different levels of environmental perturbations such as seasonal fluctuations, natural disasters, and global change have different impacts on organisms and therefore their ability to acclimatize and adapt. Thus, to understand howorganisms evolve under different perturbations is a key for predicting how environmental change will impact species diversity and ecosystem productivity. Here, we developed a computer simulation utilizing the individual-based model approach to investigate genome size evolution of a haploid, clonal and free-living prokaryotic population across different levels of environmental perturbations. Our results showthat a greater variability of the environment resulted in genomes with a larger number of genes. Environmental perturbations were more effectively buffered by populations of individuals with relatively large genomes. Unpredictable changes of the environment led to a series of population bottlenecks followed by adaptive radiations. Our model shows that the evolution of genome size is indirectly driven by the temporal variability of the environment. This complements the effects of natural selection directly acting on genome optimization. Furthermore, species that have evolved in relatively stable environments may face the greatest risk of extinction under global change as genome streamlining genetically constrains their ability to acclimatize to the new environmental conditions, unless mechanisms of genetic diversification such as horizontal gene transfer will enrich their gene pool and therefore their potential to adapt

    Evidence for cryptic speciation in directly transmitted Gyrodactylid parasites of Trinidadian guppies

    Get PDF
    Cryptic species complexes are common among parasites, which tend to have large populations and are subject to rapid evolution. Such complexes may arise through host-parasite co-evolution and/or host switching. For parasites that reproduce directly on their host, there might be increased opportunities for sympatric speciation, either by exploiting different hosts or different micro-habitats within the same host. The genus Gyrodactylus is a specious group of viviparous monogeneans. These ectoparasites transfer between teleosts during social contact and cause significant host mortality. Their impact on the guppy (Poecilia reticulata), an iconic evolutionary and ecological model species, is well established and yet the population genetics and phylogenetics of these parasites remains understudied. Using mtDNA sequencing of the host and its parasites, we provide evidence of cryptic speciation in Gyrodactylus bullatarudis, G. poeciliae and G. turnbulli. For the COII gene, genetic divergence of lineages within each parasite species ranged between 5.7 and 17.2%, which is typical of the divergence observed between described species in this genus. Different lineages of G. turnbulli and G. poeciliae appear geographically isolated, which could imply allopatric speciation. In addition, for G. poeciliae, co-evolution with a different host species cannot be discarded due to its host range. This parasite was originally described on P. caucana, but for the first time here it is also recorded on the guppy. The two cryptic lineages of G. bullatarudis showed considerable geographic overlap. G. bullatarudis has a known wide host range and it can also utilize a killifish (Anablepsoides hartii) as a temporary host. This killifish is capable of migrating overland and it could act as a transmission vector between otherwise isolated populations. Additional genetic markers are needed to confirm the presence of these cryptic Gyrodactylus species complexes, potentially leading to more in-depth genetic, ecological and evolutionary analyses on this multi-host-parasite system

    Accounting for the genetic load in assisted reproductive technology

    Get PDF
    The genetic load in the human genome has important ramifications for assisted reproductive technology (ART), human reproduction and fertility more generally. Here, we discuss these topics in the light of evolutionary genetic theory, the technological revolution in ART and the advances in the fields of genomics and bioinformatics
    • …
    corecore